矩阵的模(矩阵的模长)

频道:社会 日期:2022-08-05- 03:00:19 浏览:28

今天给各位分享矩阵的模的知识,其中也会对矩阵的模长进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

什么是矩阵的模矩阵的模是怎么定义的?

如果你看到的记号是||A||,那么这个所谓的模其实是矩阵范数,参看下面的链接,我前两天刚刚编辑过

如果你看到的记号是|A|,那么这个经常用来表示A的行列式det(A),有时也用来表示A的所有元素取模得到的矩阵.

矩阵的模怎么计算?

任意矩阵的模,是能计算的,模就是只有n阶方阵可以计算,或者n阶行列式......书上定义已经明确的说明,所以计算模,要先看清楚是不是方阵。不是方阵,是不会出现模这种算法的,因为模只针对方阵。

一个矩阵的特征值可能是复数,在复数的情况下就会有模。n×n的方块矩阵A的一个特征值和对应特征向量是满足Aμ=λμ的标量以及非零向量。其中v为特征向量,λ为特征值。A的所有特征值的全体,叫做A的谱,记为λ(A)。矩阵的特征值和特征向量可以揭示线性变换的深层特性。

矩阵含义

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。

这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

矩阵的模是什么,和范数有什么联系?望详细解答,想想大家了!

模又称为范数,具有“长度”概念的函数。在线性代数、泛函分析及相关shu的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。

范数常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即非负性;齐次性;三角不等式。

扩展资料:

如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

容易验证,2-范数和F-范数是酉不变范数。因为酉变换不改变矩阵的奇异值,所以由奇异值得到的范数是酉不变的,比如2-范数是最大奇异值,F-范数是所有奇异值组成的向量的2-范数。反之可证明,所有的酉不变范数都和奇异值有密切联系。

矩阵怎么求模?

矩阵的1范数:将矩阵沿列方向取绝对值求和,取最大值作为1范数。例如如下的矩阵,1范数求法如下:

对于实矩阵,矩阵A的2范数定义为:A的转置与A乘积的最大特征值开平方根。对于以上矩阵,直接调用函数可以求得2范数为16.8481,使用定义计算的过程,说明计算是正确的。

对于复矩阵,将转置替换为共轭转置,矩阵A的∞范数定义为先沿着行方向取绝对值之和,取最大值(与1范数类似)。

扩展资料:

注意事项:

1、应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。

2、矩阵范数却不存在公认唯一的度量方式, 一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性。

3、如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k0,使得k║·║是极小范数。

4、如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

参考资料来源:百度百科-矩阵

参考资料来源:百度百科-矩阵乘法

谁能告诉我矩阵的模是什么意思?

如果你看到的记号是||a||,那么这个所谓的模其实是矩阵范数,参看下面的链接,我前两天刚刚编辑过

如果你看到的记号是|a|,那么这个经常用来表示a的行列式det(a),有时也用来表示a的所有元素取模得到的矩阵。

关于矩阵的模和矩阵的模长的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

相关文章